381 research outputs found

    Reshuffling: a fast algorithm for filtering with arbitrary kernels

    Get PDF

    Ordered Pooling of Optical Flow Sequences for Action Recognition

    Full text link
    Training of Convolutional Neural Networks (CNNs) on long video sequences is computationally expensive due to the substantial memory requirements and the massive number of parameters that deep architectures demand. Early fusion of video frames is thus a standard technique, in which several consecutive frames are first agglomerated into a compact representation, and then fed into the CNN as an input sample. For this purpose, a summarization approach that represents a set of consecutive RGB frames by a single dynamic image to capture pixel dynamics is proposed recently. In this paper, we introduce a novel ordered representation of consecutive optical flow frames as an alternative and argue that this representation captures the action dynamics more effectively than RGB frames. We provide intuitions on why such a representation is better for action recognition. We validate our claims on standard benchmark datasets and demonstrate that using summaries of flow images lead to significant improvements over RGB frames while achieving accuracy comparable to the state-of-the-art on UCF101 and HMDB datasets.Comment: Accepted in WACV 201

    Multi-Kernel Object Tracking

    Get PDF
    In this paper, we present an object tracking algorithm for the low-frame-rate video in which objects have fast motion. The conventional mean-shift tracking fails in case the relocation of an object is large and its regions between the consecutive frames do not overlap. We provide a solution to this problem by using multiple kernels centered at the high motion areas. In addition, we improve the convergence properties of the mean-shift by integrating two likelihood terms, background and template similarities, in the iterative update mechanism. Our simulations prove the effectiveness of the proposed method
    • …
    corecore